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INTRODUCTION
fter Fermi’s discoveryh of the possibility of producing

Á 1 slow neutrons by surrounding a source of fast neutrons by 
hydrogeneous substances such as paraffin wax, the problem 
of the mechanism of the collision between neutrons and 
protons has become important for the study of the proper
ties of slow neutrons. The problem has already been treated 
by Fermi himself2), who describes the slowing-down pro
cess in the following way. Neglecting first the fact that 
the protons in the paraffin are bound chemically, the fast 
neutrons which come from the source will make elastic col
lisions with the protons giving up on the average half of 
their kinetic energy at every collision. In this way they will 
soon reach thermal energies, where they will remain for a 
relatively long time, because now the chance that a neu
tron will get by a collision with a proton some of the ther
mal energy of the latter is about the same as that it will 
lose energy by the collision. The neutron will therefore 
diffuse round in the paraffin until it is finally captured by 
a proton. So long as the neutron energy is large compared 
with the oscillation energy of the proton it is legitimate to 
consider the latter as free. As the highest oscillation fre
quency of the proton in paraffin is of the order 3000 cm '

O E. Fermi, and coll., Proc. Roy. Soc. 149, 522 (1935).
2) E. Fermi, Rie. scient. VII. II. 13 (1936). See also H. A. Bethe, Rev. 

of Mod. Phys., 9, No. 2 1937.
1
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corresponding to an energy of 0.37 volt1* it will be correct 
to treat the protons as free for neutron energies down to 
about one volt.

4) <ft")Volt = 1 J'" 12 ^.n-1 = 1-233-10-4
1.59 * 10

2) Loc. cit.
3) cf. eq. (1) p. 12.
4) J. Chadwick, Proc. Roy. Soc. 142, 1 (1933) and J. R. Dunning and 

coll., Phys. Rev. 48, 265 (1935).

Classically the total cross-section for the scattering should 
be the same above and below one volt, as the cross-section 
is classically always the geometrical area of the proton. In 
a quantum treatment, however, the binding of the proton 
has a large influence, as first pointed out by Fermi2), who 
showed that one may use the Born approximation in cal
culating cross-sections for the slow neutrons. In this appro
ximation the cross-section is proportional to the square of 
the reduced mass3\ and as this is equal to the neutron 
mass when the proton is bound strongly compared with the 
neutron energy but equal to half the neutron mass when 
the proton is free, it is seen that the cross-section in the 
first extreme case will be four times as large as in the second 
extreme case. For intermediate cases this chemical factor, 
as it is called, will lie between one and four. Fermi found 
by his model for the binding the value 3.3 in the case of 
the C-neutrons.

Because of this quantum effect we have therefore diffe
rent stages in the slowing-down process. In the first stage, 
fast neutrons with energies of the order some million volts, 
the cross-section is experimentally found to be of the order 
1—2X 10 "4cm2 4) corresponding to a mean free path in 

paraffin of about 5 cm. Owing to the collisions the energy 
will soon decrease and the cross-section will therefore in
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crease11 until the energy is small compared with the energy 
of the excited state of the deuteron. In this second stage 
the cross-section will be independent of the energy and it is 
found21 to be about 13 X 10 24 cm2 corresponding to a mean 

free path of 1 cm for neutron energies from about 10 000 
volts down to resonance energies of the order of some volts. 
In the third stage when the energy gets below one volt the 
chemical binding becomes noticeable and the cross-section 
increases to about 48 X 10 Jcmï for thermal energies21, so 

that the mean free path decreases to about 0.3 cm.
For the two first stages Fermi has obtained the energy 

distribution of the neutrons31 which in the second stage, 
where the mean free path is a constant, turns out to be 

proportional to —. In the third stage, neutron energies 

below one volt, the problem of the energy distribution has 
neither as yet been solved theoretically, nor is it known 
accurately from experiments.41

For this last problem and for further problems connected 
with the slowing-down process, such as temperature effects, 
it is of interest to determine theoretically the effect of the 
chemical binding on the scattering cross-sections. Recently 
attempts have been made to connect such calculations with 
a still more extended range of problems: it has been pro
posed01 to adopt for the cross-section of free protons — which 
is of considerable importance for the determination of the

b Cf. c. g. H. A. Bethe and R. F. Bacher, Rev. of Mod. Phys., 8, No. 2 
(1936) eq. (62).

~) M. Goldhaber and G. H. Briggs, Proc. Roy. Soc. 1G2, 127 (1937) 
and O. R. Frisch, H. v. Halban jun. and J. Koch, Kgl. Danske Vidensk. 
Selsk. Skr. Mat.-fys. Med. XV, No. 10 (1938).

3) Loc. cit.
b cf. later p. 9.
5) Bethe, loc. cit.
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neutron- and radiation width of excited nuclear levels1) as 
well as for the theory of the deuteron and the discussion 
of the relation between proton-proton and proton-neutron 
forces2) — instead of the direct experimental value which 
is not very accurate, the quotient of the thermal cross-sec
tion and a calculated chemical factor. It would, however, 
he much preferable for the above purposes to have a more 
exact experimental determination of the free proton cross
section as it is only possible to base such calculations on 
very rough models for tjie binding of the protons in pa
raffin and similar hydrogeneous substances. In spite of this 
fact it is, as we have seen, of interest to get some rough 
ideas about the influence of the binding, and we shall in 
this paper treat the problem by help of a model for the 
binding which we shall discuss in § 1.

§ 1. Discussion of a simplified model for the binding of 
the protons.

The scattering cross-section and the energy loss can be 
calculated exactly if the proper function for the nuclear mo
tion in the molecules concerned is known. Theoretically it 
is possible from an analysis of the molecular spectra to 
obtain the frequencies of the vibrations and the normal 
coordinates which determine the form of the different normal 
vibrations. For the more complicated molecules, however, 
such as paraffin which is mostly used for the purpose of 
slowing down the neutrons, the resulting expressions would 
indeed be very complicated and unmanageable, quite apart 
from the fact that for these complicated molecules not all

O H. A. Bethe and G. Placzek, Phys. Bev. 51, 450 (1937).
2) G. Breit and J. R. Stehn, Phys. Rev. 52, 396 (1937). 
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the data needed are accurately known. Simpler molecules, 
like water for instance, have on the other hand so far only 
been used in the liquid state, and in this the interaction 
between the molecules which is of considerable importance 
for our problem cannot easily be treated quantitatively. We 
shall therefore in the present paper only discuss a very 
schematic model for the binding.

I. Instead of the normal vibrations we assume each pro
ton to oscillate independently in a harmonic potential, which 
we shall assume to be anisotropic, since it can be deduced 
from molecular spectra that the protons oscillate with lar
ger frequencies in the direction of the valency-bond than 
in the perpendicular directions. For the frequencies we 
shall take v = 3000 cm 1 = 0.37 volts, v = v = vv with 
/ = 0.4 so that — vy = 1200 cm“1 = 0.148 volts.

II. As we have already mentioned the binding has no 
influence classically on the scattering. This is also true if 
we do not consider the motion as a whole but only the 
separate degrees of freedom. Now we know that the nuclear 
motions in the molecules have also in addition to the larger 
frequencies which we have accounted for by the assump
tion I, a spectrum extending to quite small frequencies. 
These small frequencies we will take into consideration by 
assuming that the protons and their potentials can move 
freely like gas molecules with a Maxwell velocity distribu
tion, so that we substitute for the energy exchange between 
the neutrons and the small frequencies the exchange of 
kinetic energy between the neutrons and these “molecules”. 
So long as the neutron energy can be considered large com
pared with the energies corresponding to these frequencies 
we can namely, as we have just seen, consider these sepa
rate degrees of freedom as unbound, only the fact that 
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they are connected with the other degrees of freedom with 
the large frequencies must be accounted for. This we do 
by ascribing an effective mass to the “molecules” consisting 
of proton and potential, and for this effective mass we choose 
the value 14 times the neutron mass, which is the mass of a 
CH-2 group. This figure is rather arbitrary and corresponds 
to the conception that the energy taken up in the neutron 
collision by a proton is transferred to a single carbon atom 
in the hydrocarbon chain rather than to several of them.1)

1) It must be emphasized that this model is in no way identical with 
a gas of CHq groups. Firstly, in a CHg group the positions of the hydro
gen atoms depend on each other; this gives rise to important interference 
effects which we do not consider in our model; secondly, the slowing
down process by free CHo groups would — apart from the slowing-down 
by elastic collisions — take place by energy transfer to the three proper 
vibrations of the group and the three rotations of the group as a whole, 
while in our case we have two times three vibrations and no rotation.

2) For T = 290° abs we have kT — 0.025 volts = 203 cm k
3) Loc. cit.
4) After the conclusion of our calculations a discussion of the effect 

of the anharmonic binding on somewhat similar lines has been published 
by Bethe, loc. cit., where, however, the influence of the thermal motions 
are not considered (cf. the §§ 4—6 of the present paper).

Our two assumptions are of course very arbitrary and 
certainly not fulfilled in nature. No account is taken of 
interference effects, and apart from this it is known, for in
stance, that the frequency of the C-C vibrations in Æthan 
(C2H6) and other heavy carbon molecules is of the order 
of 1000 cm-1, which is about five times the energy of 
thermal neutrons at room temperature2 3), so that these vi
brations cannot at all be considered small. The model de
scribed is on the other hand the next simplest after that 
chosen by Fermi3), the isotropic oscillator with infinite mass, 
and it is certainly a better approximation than his4\ Taking 
now our model for granted, we shall first see which con- 
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elusions regarding the influence of the binding we can draw 
from the model, and next we shall use the results to esti
mate the effect of temperature variation on the mean free path.

In order to obtain definite results regarding the last 
problem it is necessary to know the energy ranges of the 
neutrons with which we are dealing. We shall assume these 
to be the so-called C-neutrons, that is the neutrons which 
are strongly absorbed in cadmium. The range of strong 
absorption in Cd extends from 0 to about 0.3 volts.1! Further 
we must know the energy distribution of the C-neutrons. 
This is not exactly known; its theoretical determination is 
just one of the aims of the theoretical study of the slowing
down process with which we are dealing in the present paper. 
Two methods of investigation have been used to determine 
the energy distribution of the C-neutrons experimentally. 
First the method of the mechanical velocity selector2!. By 
this method it is found that at room temperature the energy 
distribution has a maximum for an energy of the order of 
kT. Second the method of absorption in Boron3!. As the 

capture cross-section in Boron is assumed to follow the V 
law4! it is possible by absorption experiments in this ele

ment to compare the mean value of for different kinds
V

of neutrons. If for instance the C-neutrons were in thermal 
equilibrium with the slowing-down medium this mean value 
and hence the Boron absorption should vary with the ab
solute temperature of the medium as 7’^2. While between

O Cf. e. g. J. G. Hoffman and H. A. Bethe, Phys. Bev. 51, 1021, (1937).
2) J. B. Dunning and coll. Phys. Bev. 48, 704 (1935). Cf. also Bethe, 

loc. cit.
s) For a survey of the literature cf. Frisch, Halban and Koch loc. cit.
4) B. Frisch and G. Placzek, Nature 137, 357 (1936). D. F. Weekes, 

M. S. Livingston and H. A. Bethe, Phys. Bev. 49, 471 (1936).
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400° and room temperature no deviation from this T~law 
has been found the increase of the Boron absorption be
tween room- and liquid air temperature, and still more 
between liquid air and liquid hydrogen temperature, is much 
less than would follow from a 7’—® law. This proves that 
at least for temperatures of liquid air and downwards the 
energy distribution of the C-neutrons cannot be represented bv 
a Maxwell distribution with the temperature of the slowing
down medium. The question how far their energy distri
bution can be represented by a Maxwell distribution corre
sponding to a higher temperature or by a mixture between 
a maxwellian and a non-maxwellian part shall not be dis
cussed here. In view of these possibilities, however, it re
mains interesting to investigate the energy dependence of 
the scattering cross-section for a Maxwell beam of neutrons. 
We shall therefore for the purpose of the following calcula
tions assume the C-neutrons to obey the Maxwell law 
throughout. A consequence of this assumption together with 
the assumptions made about the binding mechanism is, 
however, that we cannot expect a direct comparison of the 
results of our calculations with experiment to give a quanti
tative agreement.

§ 2. General theoretical remarks.
As first proved by Fermi1) it is possible to find a 

“rectangular hole” potential V' with radius (/ <<Z and depth

1) Loc. cit. Cf. also Bethe, loc. cit. Part B p. 123.

1)',  which substituted for the neutron-proton potential will 
give correct cross-sections in the Born approximation so 
long as the following conditions are satisfied:
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I. The de Broglie wave-length, Z,1! for the neutron 
relative to the proton must be large compared with the 
range of the neutron-proton force, o:

Z » .

II. The total cross-section, Q, must be small compared 
with the square of the wave-length :

Q«Z2.

III. For I to be satisfied one can deduce2) that the di
mension of the proton wave function, a, must be large 
compared with the range of the neutron-proton force:

a » o.

For slow neutrons and protons bound in paraffin all these 
conditions are certainly satisfied, as for such neutrons Z 
is of the order of IO-9 cm or more, Q is of the order of 
48 X 10 21 cm2 and we further know that y and a are 

respectively of the order of 10 ' cm and at least 10 cm.
For the differential cross-sedions per unit solid angle 

dw, where I (3,y) dm is defined as the number
of neutrons which are scattered, after having excited the 
proton from its m’th into its n’th state, into the solid angle 
(Iw in the direction per unit time and per scatterer, if 
there in the incident beam is one neutron crossing unit 
area per unit time at the place of the scatterer, we have 
now in the Born approximation the well known expressions3*

7iD This is for non-relativistic energies given by O-),.m =
_ 1 (^mNEN)

= 2.85 X 10“9 2 when EN — ~ mNvrel *s measured in volts, u,.,,/
being the velocity of the neutron relative to the proton.

2) For instance by Fourier analyzing the wave function of the pro
ton in respect to velocity.

3) Cf. e. g. Mott and Massey, “Theory of Atomic Collisions”, p. 100,
eq. (21). (The equation is erroneous, the factor missing). It will be 

A*0
seen that in this approximation I depends on Ö only, not on
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7 (ß) =mn v 7
Ü 1/ i*  *

1) The wave vector is just the momentum vector divided by ft.
2) Cf. Note 1, eq. (N 5).

4/rí2 ) di" J rit',eXP (í*» ’»r) V'(l

*" =é0-*  , =um u mn9 O ' / tr

k‘.,. =2,’? » = < <*o.  *)  

where i// and ipn are the wave functions of the proton 
before and after the collision, k0 and knm the initial and 
final wave vectors of the neutron, and Afv, Eo the reduced 
mass and energy of the neutron.

In this expression V' only depends on the distance be
tween the neutron and the proton, so taking rv— rp as a 
new variable in the <7rv integration we can at once perform 
this and using that the exponential is equal to unity by 
this integration due to 2 » q' we get

Equation (3) we can write in the following way using the 
expression for the total cross-section for scattering between 
a neutron and a free proton1 2) which we shall denote by Qfree

(4)

We emphasize here that the expression (1) or (2) is calculated 
in coordinates relative to the center of gravity of the system in 
which the proton is bound and as this fact sometimes gives 

(1)



On the Scattering of Thermal Neutrons by Bound Protons. 13

rise to a little confusion we shall briefly give the definitions here, 
the transformation formulae being derived in Note 2. In the theory 
for two-body collisions three different coordinate systems are used. 1) 
First the system where the one particle is at rest before the col
lision, which we shall call the rest system and denote by I?.2) 
(All variables denoted by capital letters). Next the system where 
the center of gravity of the two particles is at rest both before 
and after the collision, which we shall call the center of gravity 
system and denote by C. (All variables denoted by small letters with 
an asterisk). Finally the system which has its origin in the center 
of gravity of the one particle both before and after the collision, 
which we shall call the relative system and denote by r. (All vari
ables denoted by small letters). Let the two particles have masses 
mi, m2 and coordinate vectors /?i, /?2, then the center of gravity, 
Z?(., is defined by

mïRl + m2tf2 — (/»i+ m2)R(. (5)

The coordinates referred to the center of gravity are next defined by

n*  = /?1 — Rc, r.f = /?., — Rc (6)

Putting (6) into (5) we get

rf 7’2*,  fll*  — 71 — 0-j*,  */T*  — T‘2*  71 (?)

if we introduce polar coordinates. Finally the relative coordinates 
are defined by

r2 = /?•>—/?! = r2* —r?, H = o (8)

the particle with index one being taken as the particle initially 
resting in the R system. Using (5) we then have, introducing the 
reduced mass

(9)

M = mi • rn2
mi + m2
M * Mr2* = r»m2 ~ or r2* = r2,m2 02* = Øj, <f2* = (f>2

M * Mn*  = r2 or = — r2, 0i*  — 71—0?, (fl*  — <12 4" 7i-mi mi

1) The following also applies to the case where one or both of the 
two particles are complex, consisting of more parts. In this case the mass 
is the total mass and the coordinatevector is the one of the center of gravity.

2) It should be noted that this system it not always identical with 
the coordinatesystem in which we make the observations, cf § 4.



14 Nr. 1. Niels Arley:

We see from (9) the important fact that the angle of the colliding 
particle is the same in the C system and in the r system, due to

Fig. 1. Angular distribution of scattered neutrons in the rest system cor
responding to isotropic distribution in the center of gravity system, for 

ms = 14 mN.

which circumstance the formula (1) is often said to be derived 
in the C system in spite of the fact that it is really derived in 
the /• system.

From the formulae (2) and (4) we can at once deduce 
that, as was already mentioned in the introduction, the 
total cross-section will be nearly four times as large as the 
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one for a free proton when the proton is strongly bound, 
which means that the space in which the proper function 
of the proton is different from zero is very small compared 
with the wave-length of the neutron. We can then put the 
exponential equal to one, so that we get quite independent 
of the form of the proper function of the proton

“TTP «U = T<U O«)
"0

which means that only elastic scattering can occur and 
that this is spherical symmetric in the relative system just 
as is the case for scattering by a free proton.In the rest 
system, however, we will no longer get the cos 0 law2* due 
to the mass of the scatterer being now larger than the neu
tron mass. In Fig. 1 we have plotted in units of q the curve 
for (10) transformed to the rest system !) for the mass of the 
scatterer, ms, equal to 14

For the total elastic cross-sections we get from (10)

using (4). For the case MN = mN i. e. vis = oc the factor 
of ()free in (11) reduces to the factor 4 first obtained by 
Fermi.4) We have in this work taken ms = 14 mN throughout 
so that

4Í—) = 4^ = 4-0.871 = 3.48 (12)
\mN/ \lt>/

which makes a considerable difference.

1) Cf. Note 1.
2) Cf. Note 2 eq. (N 19).
3) Cf. Note 2 eq. (N 18).
4) loc. cit.
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§ 3. The anisotropic oscillator.
We now in (2) put the wave functions for our ani

sotropic oscillator and as these are products of three wave 
functions for a one-dimensional harmonic oscillator, the 
matrix element will he a product of the matrix elements 
of the type given by eq. (N 24) in Note 3. Using the for
mulae (N 32) and (N 35) in Note 3 we have at once for 
the 0 —> 0 transition, which is the only one we shall treat 
here

Alp being the reduced mass of the proton, w_ = 2/rr,, v_ 
the frequency of the oscillation in the direction of the 
2-axis and tí the angle between k0 and k00 i. e. the scat
tering angle of the neutron.

Further we must take the mean value of (13) over all 
directions of the oscillator. This we do by taking the axes 
of the oscillator as coordinate system and averaging over all 
directions of k00 in respect to this system, the length of k'0'0 
being kept constant. In this way we get, denoting the 
mean value by /Ool()Sl2)

We introduce as new variable the dimensionless quantity

D Cf. eq. (N 36).
2) A mean value we shall in this paper always denote by this symbol.



On the Scattering of Thermal Neutrons by Bound Protons. 17

where VA, is the velocity of the neutrons in the rest system, 
and then we can write (14) in the following form, due to

A)o|osc~ (1

9 a'oo2qz = 4 w sin¿ f fry 03))

s
2

(/<!). (16)

For y = 1 we get the cross-section for the isotropic oscillator^

C = ç-exp(—4Wsin8-|y (17)

In Fig. 2 we have plotted in units of q the curve (16)3) 
transformed to the rest system3) for two different values of 
W, W = 0.0697 (full line) and W = 0.0156 (dotted line) 
which correspond to 7m\ = 0.37 volts, / = 0.4, ms = 14 mN 
and EN equal to the effective energy of neutrons at room 
respectively at liquid air temperature, i. e. 90° abs.4) It is 
seen that even at liquid air temperature there is still a 
considerable deviation from the spherical symmetry which 
is always assumed in calculations about the diffusion of 
thermal neutrons.5)

1) Cf. Fermi, loc. cit., and Note 3 eq. (N 34).
2) The function exp (í2) di is tabulated in Jahnke-Emde “Tables of 

Functions”, p. 106.
3) Cf. Note 2 eq. (N 18)
4) Cf. § 6 p. 38.
•T Cf. Fermi and Bethe, loc. cit.

Vidensk. Selsk. Math. fys. Medd. XVI, 1.
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The curves in Fig. 2 can
function

also be represented by the

jis __ J fis _I r IS
^00 — g’-'OO I ^700’

Fig. 2. Angular distribution in the rest system of neutrons scattered by 
anisotropic oscillator. Full line corresponds to VF = 0.0697, dotted line 

to VV = 0.0156, W given by (15).

where T^o ’s given by (17) and 4o stands for the same 
function with /co substituted for w, which we can write 
as in (18) with IF given by (15). The reason why the 
curves (16) and (18) are so like is easily seen analytically 
by expanding in powers of VF We then get
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1+3[] + 10[]2+42[]'!+‘” j

(19)

so that the two curves have the same starling point and 
starting tangent and the difference comes first in the second 
power of W.

From (14) we can now by integrating over 6 and y 
get the mean value of the total cross-section. The result is

Qoo |osc

< C1!—,îxp(“4w7,[l — <1 —;->C])

i/(f\ Mose sin \ ' (lt- (2())

1 “ A
For / = 1 we gel the well-known formula for the iso

tropic oscillator1)
1—exp(—4W) 

Qoo = h- (21)

In Fig. 3 we have in the full curve plotted (20) in units of 
Qfree2) f°1’ / — Û.4 and ms =14 mN. Also we have in the 
same figure in the dotted curve plotted the curve analog
ous to (18),

As we know from (19) the two curves have the same starling 
point and starting tangent. This can also be seen by direct 
expanding in powers of IT

1) Cf. Fermi, loc. cit. Cf. also Note 4.
2) Cf. eqs. (4) and (12).

2
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F
ig

. 
3. Energy dependence of total elastic scattering cross-section for anisotropic oscillator with y — 0.4 (full 

line). D
otted line corresponding m

ean value for isotropic oscillators (see text). (1 he unit on the ordinate axis 
is Q

free whereas the curves are plotted in units (= 
50 m

m
) of nq 

- 
0.871 

• 
(ef. eq. (11)) so one ordi

nate unit equals 50/0.871 — 57.4 m
m

.)
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Since y< 1 — (1 —}') /2 1 (due to / = 0.4 < 1) in the inte
gration range of t in (20) we can for large W neglect the 
exponential and we lind then after elementary integration

For / = 0.4 the two coefficients are respectively 0.531 and 
0.6. That and Co are very nearly equal to /00|osc and 
Ooolsc is also physically plausible, /¿s0 and Qoo we can namely 
interprete as the average cross-sections for scattering in a 
substance consisting to one third of oscillators with energy 
/?w_ and to two thirds of oscillators with energy ¡'/¡w., 
while we by Z00|oscand Q00|osc are averaging over all directions 
of one oscillator with one degree of freedom oscillating with 
an energy and two degrees of freedom oscillating with 
an energy /Tiw,, so that one would think that the two kinds 
of averaging would give nearly the same result, which is

i) This series is, as is easily verified, identical with Bethe loc. cit.
Part B eq (463), if we put ms = oo, as then our 7iq—>~ ffo, IV—> ít, W —> e2 
by Bethe.
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in fad found to be the case as we have just seen. Due to 
the expression (20) being far more complicated than the 
expression (22), we shall in the following use Qq0 instead 
of QoolOSc’ error being negligible especially as we shall 
only be interested in that part of (20) which belongs to 
small values of W.

§ 4. Influence of the temperature motion of the 
scattering centers.

We must now take the second feature of our binding 
model into consideration. At the same time we shall define 
a new scattering cross-section which can be directly measured. 
The cross-section is as a rule determined experimentally 
by measuring the absorption in varying thicknesses of 
paraffin.O If now the scatterer does not rest but moves 
with a velocity relative to the coordinate system in which 
we are measuring, it is clear that another number per unit 
time of neutrons will be turned out of the beam and so 
we shall find another absorption coefficient. This number 
of neutrons expelled from the beam we can easily get by 
using the fact that the total cross-section is the same in 
all Galilei systems2) and so the total number scattered per 
unit time and per scatterer or the probability for a scatter
ing process is just

^=<?"relQ

where o is the density of the neutron beam, i. e. number 
per unit volume, ®rel the velocity of the neutrons relative 
to the scatterer and () the total cross-section calculated in 
the relative system. In an experiment, however, we can

1) Cf. e. g. E. Amaldi and E. Fermi, Phys. Rev. 50, 899 (1936).
2) Cf. Note 2.
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only measure Lhe velocity of the neutrons relative to our 
observing system, VN, and not the one relative to the scatterer, 

and so we must define an experimental cross-section 

Qexp by tlie equation

(25)

so that the experimental cross-section is given in terms of
the usual one by

(26)

Now we can take our second assumption about the 
binding model into consideration, the velocity of the 
scatterer not being constant, but distributed according 
to some probability law, F(ï>s), the probability for finding
lhe scatterer with a velocity between and ‘UsJrd‘V^ being 
just equal to F(<Vs)d'Vs. Soon the average we shall find 
the scattering probability, which we shall denote by P\s,
equal to

¡¡ /WQ

Ü F(Vs)dVs

and so the average experimental cross-section, Qexp|s, will 
be given by

Vrel
-------  (27) 

¡I /'(®s) dt>s

For F(i>s) dVs we have assumed the Maxwell distribution 

F(üs) dVs exp (— g p|) dVs, (28)
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where ms is the mass of the scatterer (which we in this 
paper have chosen to be equal to 14 times the neutron mass), 
k is the Boltzmann constant 1\ 7's is the absolute temper
ature, and the constant is chosen so that \F(‘Vs)d<Us = 1.

For Q we ought to take the expression (20), but as we 
are not interested in temperatures much higher than room 
temperature, the main part of the integral in (27) will 
come from that part of Q which belongs to values of the 

energy not much higher than which means that om

variable W 2) will be of the order 0.1 due to the value of fiw.
having been chosen equal to 0.37 volts. For small values
of W, however, we have seen that (20) can be approxim
ated by QoO defined in (22), so that we can safely put 
QoO instead of the Q from (20) into (27). We have there
fore first to put (21) into (27) and we get then using (15)

X exp (—// p“) dvs,

X
(29)

Taking Vs— VN — V as new variable and choosing a polar 
coordinate system with VN as polar axis the integration 
can be worked out and we get3) 

(30)

where </>(.r) is the Gauss error function defined in eq. (N 49).

1) k = 1.371 X 10 16 erg grad 1 = 8.623 X 10 5 volts grad ’. For 
room temperature, T — 290° abs, we have kT = 0.0250 volts.

2) Cf. eq. (15).
•b Cf. Note 5.
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Fig. 4. Energy dependence of scattering cross-section fin units of Qere(,) 
for scattering centers at room temperature, i. e. 290° alts (full line). Dot

ted line corresponds to resting scattering centers.
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X

26

introduce now the new dimensionless variables IV nWe
and s defined by

IV = ' VN =

1 2
2 m^T f

fl m v ’
* 1 + A

ms

s. _ i“' _ e f = (cl. eq. (N 36))
dtpU lï ft)

' 1-
™s ’
my

'(31)

Putting (31) into (30) we

(32)
CD (D

Qis vexp s- TT q • IV ' X

1 IV
.$■

Vor (?CX|,L we find the same formula only with IV and
1 ' ?

s substituted for IV and s. In Fig. 4 we have in the full 

curve plotted
= 1 7p”| + 2 (33)

vexp|s 3 «exp|s 1 3 V.expH, /

in units of ()free2) as a function of IV for n?s = 14 mv,
= 0-37 volts, )' = 0.4 and Ts = 290° abs which makes 

•S’ = 999- Also we have plotted the curve for Q‘s 3) and it 

is seen that for IV > 0.1 the two curves are identical. The 
reason for this can easily be seen analytically from eq.

1) The IV here is formally equal to W in (15) only the there is 
now the kinetic energy in the observation system and not in the rest 
system as in (15). Only for 7's = 0°, i. e. resting scattering centers, these 
two systems are identical.

2) Cf. eqs. (4) and (12).
3) Cf. eq. (22).
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(32). Forx greater than 2.5 d)(æ) = 1 and so we get, dne
to s « 1

^exp[s= ;TT 1 ~ exp(— 4 W)} = Qls, P tv) >2.5

and so under the same condition

This result we also get if we take the temperature of 
the scatterer Ts = 0° which means that the scatterer is 
resting, and we should therefore as cross-section find just 
Q which is in fact the case.

For neutrons of room temperature Eki = kT = 0.025 
volts we have IF = 0.063 and we see from the curve that 
the corresponding QXP[s *s ecIual to 2.76-Qfree. If we take 

Ekin = 2kT we Set VV = 0.095 and Q's'P|s = 2-46’Qíree»

§ 5. Maxwell distribution of the incident neutrons.
From the formulae (32) and (33) we can already draw 

conclusions about the temperature effects. In order to be 
able, however, to compare the results with experiments, 
we must take into consideration that the beams of thermal 
neutrons which can be produced in praxis, e. g. by slowing 
down fast neutrons in paraffin, are never homogeneous 
but have some energy distribution. As discussed in § 1 
this is not known quite exactly, but we shall here ap
proximate it by the Maxwell distribution. If e(E) is the 
Maxwell distribution for the current, that means that the

1) As will be seen later, the effective energy is 1.103 kT at room 
temperature, cf. § 6 especially p. 38. The correct value is therefore 
2.69 'Qfree (cf. also Table 1, 7’s = 7’v = 290°).
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probability for tbe neutron which hits the scatterer having 
an energy between E and E + dE is e(E)dE, then the 
cross-section which would be measured should just be the 
average value of Qexp|s

In praxis, however, this is not the value measured due to 
the fact that the Boron detector which is mostly used to 
measure the intensity of the neutron beam is not equally 
sensible for all neutron energies, but absorbs according to 
the 1 law. If we then by/(F) denote the sensibility of the 

o
detector, that means the fraction of the neutrons hitting 
the detector which it records, then what is really measured 
is obviously the following average value of the cross-section 
O L which we shall denote by () .. ..exp| S J X. eXp| jy

JOexpk’^7^)^ 

$ e(E) 1(E) dE
(34)

and this we shall now calculate.
The Maxwell distribution for the current, e(E), is pro

portional to VffFÇVff) dVN, F(í>N) being given in (28) 
if we substitute N for S, or transformed from velocity to 
energy, proportional to

Due to the law we have further that

/(F) = aE 1/2 
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X

where a is some constant characteristic for the detector 
used. So we get that

e (E) I(E) dE = a F(E) dE, \ F(E) dE = 1

and as the factor a drops out in (34), what we have to 
calculate is in facl only the mean value in regard to the 
Maxwell distribution for the density

F(E) dE. (35)

we can write
-32tt

and into

4 W
X (37)(I) (D

we getputting this and (32)

dimensionless quantity, n, by

__ 1
7T

s given by (32)

. If

—>/a ■
77

'exp|s We haYe 11OW to Put Qexpls

--3/o
n " XQis exp.S

00

^exp s N

For ()
and (33), and we must therefore first calculate Q(!>X|)|S|V 

we define a new

MN f
(cf. eq. (N 36)) (36)n " /? «

[ : ”■
1+4.S

Both integrals are here of the same type
GO

VV“‘2 exp (— «2 IV) (ß w'2) dW = 2 7t“‘/2 a-1 Arctg 
o

which formula is proved in Note 6.

$ a
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after

1X Arctg

s (38)n
N

.S'

(cf. eq. (N 36))e

= ()'s so that
is

due to Arctg oc =

we

(39)
.V ■V

Putting in the correct values for a and /$ we get 
an elementary calculation

e
m 

1 + in,

(/j.v = lim
s —> 0

o

"is
— m

For Ois’ LL exp|S|A

Kv

Cp's.v =

— (1 4-4 (n + s))— 2 Arctg

() vexps

For 74 = 0° we have found 0 that ()ls L o ——i ^explS
we can obtain Q'jx by putting s = 0 in (38)

2 2mj. — m\

7T

get the same formula with 1 ,s and 

substituted for s and n respectively, and so finally

QIS I 
^expSW

/ns

"iv

1 f)'s' I
N ' 3 expjs= 1 r IN 3 vexp|s

(l+4(n+s)’s) .

/f4 __±_
Fl (t) 111

14- —
îï di.

n = 1 y 
s Ts

In Fig. 5 we have plotted the curve (39) in units of 
(?free2) as a function of TN for various values of Ts with 
ms — 14 mN, Îî(f)_ — 0.37 volts, and / — 0.4. The values 
are also given in Table 1. We see that for Ts = 7'y — 290° 
the cross-section is 2.7 times larger than the free cross
section. Amaldi and Fermi3) find experimentally for the 
ratio of the two cross-sections the value 3.7. The experi-

1) Cf. p. 27.
2) Cf. eqs. (4) and (12).
3) loc. cit.



On the Scattering of Thermal Neutrons by Bound Protons. 31 

mental value for the free proton cross-section measured 
with resonance neutrons is, however, very inaccurate, as 
already mentioned in § 1.

Fig. 5. Scattering cross-sections (in units of Qfrec) for neutron beams with 
Maxwell distribution as function of neutron temperature for different 

values of the temperature of the scattering centers.

w e see further that for liquid air temperature the cross
section is 34% higher than for room temperature, the scat-



32 Nr. 1. Niels Arley:

Fable 1. The total elastic scattering cross-section in units 
of Q free as a function of Ts an<^ 1\ given by eq. (39) with 

ms = 14. mN i. e. 71 q = 0.811-Qfree (cf. p. 15).

T\

J's
20° 90° 290° kT volts

0°....... 3.39 3.11 2.58 0
20°....... 3.59 3.17 2.58 0.00172 liquid hydrogen temperature
90°....... 4.26 3.30 2.61 0.00776 liquid air

290° . . . 5.49 3.61 2.69 0.0250 room

terer being kepi at room temperature. The agreement with 
the experimental value of 26 % found by Fink1’ is even better 
than can be expected in view of the rough assumptions of 
our model2\ The values for liquid hydrogen temperature 
(20° abs) are only given for the sake of illustration, as for 
temperatures as low as these our model loses every justi
fication. In this case, infinite effective mass would be the 
more appropriate approximation.

In order to see how much of the variation in our cur
ves comes from the special form of the cross-section of 
the anisotropic oscillator and how much from the motion 
of the scattering centers (the factor in (26)j we have 

to compare the curves with the curve for Ts = 0, as the 
latter contains only the first influence. We see that the 
difference is negligible for room temperature but gets im
portant for liquid air temperature. Another way of studying 
the influence of the motion of the scattering centers con
sists in calculating ()exp|Jv for () equal to a constant. Put

ting this into (27) we find, proceeding exactly as in the

1) G. A. Fink, Phys. Rev. 50, 738 (1936). A similar value was found 
by Frisch, Halhan and Koch, loc. cit.

2) Cf. § 1.
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calculation of Ocxp S’ ^ie on^ new f°rmu'a needed being 
given in Note 7,

where IV and s are given by eqs. (31). It is seen that 

(40) is only a function of as it must be, since firn. does 

not enter into the problem considered here. Also it is seen
/W\l/sthat, due to ®(oo)  1, we get for s = 0 or lor ' ) » 1

that, as is physically obvious,

Is
0 const 

exp

Putting further (40) into (35) we gel, after elementary 
calculations, the only new integral needed being given in 
Note 8,

QexpS,|.s|v = Q ’2 71 1,2 1 (ns)1/a + (n + s) Arctg (41)

n being given by (36). Also here /iw. drops out, as it must,
since (41) only depends on n. Further we get for Ts. = 0

as we must get, since lim (T""slL- — const, and const | = 
s —> 0

const. In Fig. 6 we have plotted the curves (41) as func
tion of the two temperatures for ms — 14 mN and () being 
taken equal to QeXp|$|N for 7\. — 0° and = *290°,  that is 

Q = 2.58- (4J), so that we can directly compare these

0 Cf. Table 1.
Vidensk. Selsk. Math.-fys. Medd. XVI, 1. 3
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curves with the curves in Fig. 5. It is seen that the general 
character of the curves is the same, coining from the com
mon integrations, hut that the curves in Fig. 5 have another

Fig. 6. Same as Fig. 5 for a scattering cross-section which does not depend 
on neutron energy in the center of gravity system.

asymptote coming from the special function chosen for Q 
in (27).

§ 6. Effective neutron energy.
With the help of the curves in Fig. 4 and Fig. 5 we can 

now treat the problem of the effective neutron energy. By
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Ibis we mean that energy, E, which a homogeneous beam 
of neutrons must have in order that the scattering cross
section shall be equal to that of a Maxwell beam of tem
perature 7’v. For E we therefore have the equation

öexp S (E) — Qexp SA’ (^A')- (42)

Now our expressions for the Q’s are not given directly as 
functions of the energies but of the variables W,n and s. 
We have, however,

where E is the energy of the homogeneous neutron beam 
in the coordinate system of the observer and 7:v, Es are 
equal to kTN and kTs respectively. So we can solve the 
equation (42) in terms of IF, n and s. This can, however, 
only be done analytically in a few special cases.

As the highest temperature we are interested in is less 
than say 1000° — 0.0862 volts, we see that both n and ,s- 
are small compared to unity and so we can in this case 
expand everything in (38) with the result that

0 Cf. eqs. (31) and (36).
3
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(44)

From this formula we see that () is large for ( « 1
and from the curve for QeXp|s we can conclude that the 

corresponding value of 1 j is also small. By expanding 

in eq. (32) we then find

(45)

Putting (44) and (45) into (42) we readily lind that the 
effective energy is given by

(46)

independent of the temperature of the scattering centers. 
This value is also the effective energy of a Maxwell beam 
in regard to absorption in Boron1) (while we define the 
effective energy in regard to scattering) because the cross
sections in both cases vary as ' (cf. eq. (45)).

1) Cf. e. g. H. H. Goldsmith and F. Raseti, Phys. Rev. 50, 328 (1936).
Cf. also Bethe, loc. cit. Part B p. 136.

a
If we take also higher powers in the expansions into 

consideration, we are able to get information about the

starting tangent of the curve =A' 1N 
tions are however lengthy and we

The calcula-

shall therefore only
give the result found, namely that for small values of E

(47)
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z being a numerical constant depending on 7's, so that 
the curve is seen to decrease at the beginning when
is increased.

II. case:

This we cannot fulfil for all values of .$• if we still want
both s and n to be small compared to unity. If, however, 
all three conditions are fulfilled, we can put <7> and Arctg 

equal to 1 and respectively and we get then from (32) 

and (38)

v = zr7'4(1 — 3/j). (48)

For Q we get the same expressions with IV and n 

substituted for IV and n respectively. From (42) we then 
easily obtain

E = 2 kTx (lor 6$) » n « !» -s « 1 J • (49)

This is the classical relation that the mean energy of a 
Maxwell beam is equal to Jå’7’, which result we would 

also expect to turn out under the conditions stated above.

III. case:

In this extreme case we would lind independently of s

(51)
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This case is, however, not of much physical importance, 
as we cannot neglect the inelastic scattering for energies 
which make n » 1.

In Fig. 7 we give the curve for as

kTN for 7’s — 290 found numerically from

a function of

the curves in
Figs. 4 and 5. This “pipe” like curve we have already used 
in § 21} to obtain that the effective neutron energy at 
room and at liquid air temperature is equal to 1.103 k/’x 
and 0.795 k/x respectively.

i) Cf. p. 17.
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Note 1.

For our potential V' we have assumed z » o'1), so we know 
that all the phases will be negligible except the first one, this 
being given by2)

j¡o = arctg tgÅ-'o'j — (N 1)
Further 3)

f('k?) = IJ,- (exp(2zi;o)-l)|2= ':S (N2)
I Z Z Åo I Ao

since >¡o « 1- As in our case k'g' and kog are both small, we 
can expand the tg and arctg in (N 1) with the result

i i m v D'
r.o = 3 Á-ü(/3(A-'2-Á-o2) = 3 koo't- . (N 3)

Putting (N 3) into (N 2) we lind

1 mv o
f= g "K (D>'3)' (N4)

which shows that I is independent of both the angle and the 
velocity of the neutrons so that the scattering is spherically 
symmetric.4)

Since Q = \ 1 do we finally get for the total cross-section for 
scattering of slow neutrons by free protons, that this is a con
stant given by

4 7 /,2 v o
Q = 9 ~ (ß'e'T (N 5)

Note 2.

As the transformation formulae between different coordinate 
systems are often used but seldom given in full, we shall here 
compile them for reference. Firstly let us consider two coordinate 
systems K and K*  so that K*  has axes parallel to the axes of K and 
further moves along the positive .r-axis of A’ with constant velo-

!) Of. p. 10.
2) Cf. e. g. Mott and Massey, “Theory of atomic collisions” eq. (30), 

p. 29. pfhe mass there is equal to the reduced mass, j.

3) Mott and Massey, loc. cit. eq. (17), p. 24.
4) It should be remarked that this means that in the rest system the 

differential cross-section is proportional to cos 0 cf. Note 2, cq. (N 19).
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city u. A particle is moving with velocity v*  in the system K*  
forming an angle b*  with the .r*-axis.  In the non-relativistic case 
which we are here considering, u « c, we have then that in the 
K system the particle moves with velocity v = zz-j-®*,  the angle 
b between v and the .r-axis being determined by

sin b* cos b =
* i 11cos z>*4-

Z>*

sin b —

V

(NG)

which formulae are at once deduced from Fig. 8.

For the K- and /¿‘-system we now7 take the R and C systems1) 
and shall obtain the transformation formulae (N 6) for this case, 
when the particle with mass zzi2 moves with constant velocity V2 
along the .r-axis before the collision. From (5) we find, due to
Vi = 0

zz K- ZZZo

Illi + (X 7)

and as we assume that no outer forces are acting, this velocity 
is the same before and after the collision. To obtain V\'*  and zx/*  
(the dashes referring to the state after the collision) and so the 
transformation formulae for the two scattering angles, o*  and b->*,  
we only need to use the conservation law for the energy

/zpi’i*' 2+ .> ni.2u*-  — (En—Em) = J, z7ZiUi'*- 2+ i ni.2v/*-  (N 8) 

where En—Em is the excitation energy given up by the particle
2 in order to excite the particle 1 from its zzfth to its /¡‘th state

D Cf. p. 13.
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during the collision. This energy can be positive or negative; for 
m = 0 it is positive lor all n. Using (7) and ©i*  = —u, ü2* = V2— n, 
we get from (N 8) due to (N 7)

*2 _ y02 (__ _1 f._ 2 —
2 ' nil + n72/ “ ni2 (nil + ni2) (N9)

(N 6) is now fully determined by (N 7) and (N 9), but only in the 
case of elastic scattering, En— Em = 0, we get simple analytic ex
pressions. In this case we get, using (7)

nil
zni + ni2 (N 10)

so that (N (1) becomes, independently of Vo, using (9)

tg ©2 = sin 62
cos d2+ ni2 

nil

COS @2

sin ©2 =

©1 = “W (^----- do), — (f^ 7T, SÊo ---- ÇC2

(Nil)

so 0 < ®o < n when nil 4= ni2, but 0 < ®2 < 
cause we then simply get

@2 = do

when nil — ni2 be-

which, combined with (N 11), gives the well-known relation

©i+@2

Solving (N 11) for do we find

sin (do— ®2) = sin @o (N 12)nil

which for nii » m2 reduces to

do = ©o -|---- - sin ®o.mi

Further we can, using the conservation laws, deduce the formulae 
for the energies before and after the collision in the rest system :
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4 nil nn> 0 COS2 @1 )

(n\i + ni2)2

Ei = E-,
4 nii m-2 

(nii+ niél
eos2 @1

(N 13)

By definition we have for the cross-sections that

Imn(®, *)di2  = = lmil(0,cp)dco (N 14)

(dropping the index 2) which we can write, due to —: = (p

r r / X sin fj dti
(0’f/) sin ® ’ (N15)

For the special case of elastic scattering, m
from (N 11)

sin f)
sin ®

n, we get

(N 16)

d® 
cos2 ® (N 17)

Putting (N 16) and (N 17) into (N 15) we finally get using (N 11)

zn2\2 
nil)

(X 18)

For nil » m2 we get

.<?(«) =

In the special case nij = ni2 we lind the well-known formula

<7 (o) = 4 cos = 4 cos ®. (N 19)
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The function g (ß) we can transform to ® by (N 11) and we
find then

(N 20)

which for mt » just reduces to 1 + 2 'U1 cos 0.
77?!

From (N 14) we can at once deduce that the total cross-sec
tions in the two coordinate systems are identical. This is, how
ever, only a special case of the more general theorem that the 
total cross-section is the same in all Galilei systems.1) This is 
readily seen from the definition. Calling the probability for the 
scattering process P, that is the number per unit time and per 
scatterer scattered out of the beam, the cross-section Q is delined 
as the ratio between P and the number in the incident beam 
crossing unit area per unit time at the place of the scatterer, so 
that we have 

(1 -cos* 0)1'- (1 + 2 "t, cos «.* )’ '

!) By a Galilei system is understood a coordinate system which 
moves with constant velocity along a straight line.

2) We have only considered the non-relativistic case. In the relativ
istic case Q is also invariant so long as the coordinate systems move in 
the direction of the current.

where o is the density of the beam, that is the number of par
ticles per unit volume, and r>rel is the velocity of the beam rela
tive to the scatterer. Since P, o and urel are the same in all Ga
lilei systems, () is at once seen to be invariant.2)

From (N 14) we can also deduce the transformation formulae 
for the differential cross-sections from one Galilei system K to 
another K*.  The formulae for the angles are, when it is the velo
city of the system K* , measured in K

cos 0 =
COS 0*+ U COS «1*+ Al COS «•>*+ ” *

V\ V* V-2

sin føi* —y>2*)  sin 0-*
(N 22)
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(with the expression for cos 0 inserted from the above formula)

= <(®i,2*,«),  <P1* —ÍP2*=  < ([®i*xw],  [®2*X«J)

©*  = <£ -i»*  — <x (i^i*x»2*J,  [®i*x«j)

(and analogous formulae for the quantities without stars) which 
formulae are obtained from the general formulae of spherical 
trigonometry, using (N 6), the direction u being taken as the polar 
axis in a polar coordinate system. Theoretically we can from 
(N 14) and (N 22) obtain the transformation formulae for the 
differential cross-sections, but in praxis (he resulting expressions 
are so complicated that they are quite unmanageable, with the 
exception of the special case where u has the same direction as 
one of the ®*'s,  in which case (N 22) reduces to (N 6). Further, 
if u lies in the plane of v*  and v~*  we get 4s — 4>*  = (I, the for
mula for 0 being the same.

Note 3.1)
For the eigenfunction of the one-dimensional oscillator we

where Mp is the reduced mass of the proton, <o the cyclical fre
quency of the proton and Hn the n’th Hermite polynomial. With 
these wave functions we shall now calculate the matrix element

(n I exp (ik”m x) | m) =

_n+in , <N24>
J <Pn*-exp = 7t-' -2 2 (nlmir'2enin

.4-00

enm = emn = \ CXP (1/) CXP (~.V2)
—00 , OrVi

t) The matrix elements given in this note have been given previously 
by the author, cf. Nordiska Naturforskarmötet i Helsingfors 1936. The 
reports, p. 248.

2) Cf. e. g. It lark and Urey: “Atoms, Molecules and Quanta”, p. 533.
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By definition we have1)

Hm(y) = <— 1V" exP (.V2) ( jy ) "exP (— .V2) ■ (N 26)

If we put (N 26) into (N 25) and integrate by parts, we gel due to 
the fact that exp (—y2) and all its derivatives vanish in rt 00 faster 
than every power of y

enm = ‘Inen_t „,_l + iben ,„_t (N 27)

using H'n = 2nIIn_i, 1.2> Using this recurrence formula I 
times on itself, we can show by induction that the result is

Cmn 2'~S( s) (n-V+l)! <ib)S en-l + s,m-l <N 28)

S = 0

Here / is restricted by the condition that n— I and in— I must 
both be positive or zero, that is I < min (nt, n). Assuming in < n 
we can therefore put I — in. By reducing en_z/l + s0 in the same 
way, we get

+ = (¡/>)"-'" + s^ exp (-■J) (N29)

due to

ec0 = \ exp (iby) exp (— y2) dy —
•- — 00

Putting now (N 29) into (X 28) with I = in, we get

p nm

m

s = 0
Ti'-r^ibr-"1 ill nil exp (ib)-s

2ss!(m—s)! (n m+s)! (N 30)

(m < ii).

For n < in we get the same formula with n and in interchanged. 
(X 30) into (X 24) finally gives us

11 Cf. Courant-Hilbert: “Methoden der mathematischen Physik”, 
p. 78.

2) Cf. Courant-Hilbert, loc. cit. p. 78.
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(N 31)9

.V

(—l)'d’s

Z» I"’ =
l

2s .s! (I — s) ! (| il — m I + s) !

For the one state being just the groundstate we get
71 T Q x

|'n I exp |0 ) = (n!)~';"2 ^(ib)n exp | — 4 ). (N 32)

Fop the 3-dimensional isotropic oscillator we can at once get 
the cross-sections from (N 32) since the eigenfunctions are only the 
products of three of the type (N 23). Due to the states being de
generate with the multiplicity gn — n we must form

Ann = 1 Å?'" V |/nx/ny/?Q|-(N33)

mx+iUy + m _= in nx+n.y + nz — n

This is very complicated unless m = 0 in which case we can at 
once perforin the summations if we only choose the (arbitrary) 
coordinate system so that k'nn is along one of the axes

•V

An

> I eXP

cos 6 (N35)
J/.v Eo L/>2

9 ¿0

by (1). This is the formula found by Fermi1) apart from the factor 
/MN\2 ~ mn
' * I in g (cf. eq. (4)) and from the factor in eq. (N 35) which 
Vjin7 mp
by Fermi (and by Bethe) are both put equal to unity:

D toe. cit. Cf. also Bethe, loc. cit. Part B eq. (455). It should be noted 
that by the authors quoted ms- it put equal to infinity throughout.
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> 1 (N 36)

where is the mass of the binding center in[{ — ms — mp, 
mP Ni mN. For our value of ms = 14 mN, t has the value 1.0051, 
which can be safely replaced by unity, so that we apart from 
the important factor in 7 are left with Fermi’s formula.

It might be of interest to note that the formula (N 34) can 
also be obtained by writing the wave functions in polar coordi
nates. We only give the formulae for reference1)

[■(2Z+1) (/ —|m|)!|
L 4n (Z+|m|)!j exp (imip) os 0) X

1.
r2 exp

1

h (o

Xu

n—2, n — 4, • • • >0,

' (N 37)

PJ" is the ordinary associated Legendre polynomial2) and F the 
continent hypergeometric function.3) We find

(n/m I exp (zfc"nr) | OOO) =
*/3

2 (X 38)

Putting (X 38) into the formula analogous to (N 33) we just find
the expression in (X 34) for /on due to the formula proved by the 
author4)

(n + 1 +1)’
1

2n n !
(X 39)

!) The author, loc. cit.
2) Courant-Hilbert, loc. cit., p. 282.
3) Cf. e. g. Mott and Massey, loc. cit., p. 36.
t) See Matematisk Tidsskrift, Copenhagen 1937. “To Prof. H. Bohr 

on his 50th birthday”, p. 42.
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In the calculation leading to formula (N 38) we also get the matrix 
elements for the fixed rotator with two degrees of freedom whose

• eigenfunctions are just the first part of (N 37) multiplied by 
()(/•—/’o), 7’o being the dimension of the rotator. We find

(j/ii|exp(/</r) |00)= r)o„, ('J) ■(2j+l)’27J(Å-".7-o)-'2J.+,.)(Å-” r0) (N40)

Jj |_jbeing the Bessel function of order j 9 •

Note 4.

It may be interesting to note that the formula for the total 
elastic cross-section for the isotropic oscillator can also be dedu
ced by direct calculation of the Born phases and their summa
tion which is indeed very seldom possible. We have, since the 
phases are all small,1)

QO

Q = 471 k^2 y ' (2n+l) (N 41)

n — 0

V"[U A*-  ™ O’ «)

%> = ^ol2V'dr= |^o(rv)|K-7)') 43V3 (N 43)

due to o' << a. If we put (N 43) into (N 42) using (N 37), we get

Kv ir 4 (N44)tn

Now

\ exp (_/B^)/,,(«/) J, (/<)/(// = 2//, exp (- «SJ- b2\ / ab \
4p2

2)
(N 45)

Z,,(.t) = exp (—2' z’rj .//z.t) (N 4G)

1) Cf. Mott and Massey, Joe. cit. eq. (5), p. 138 and eq. (12), p. 90.
-) Watson: “Bessel functions”, eq. (1). p. 395.
3) Watson, toe. cit., eq. (2). p. 77.
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(N 47)

2 71

.sin 2ix _ e2x-e~2x n
1 " 4«

oc

n — 0

Putting (N 42)—(N47) into (N 41) we get, using ^k01 2a2 = 4V 2>

1) Watson, loc. cit. eq. (3). p. 152.
2) Cf. eqs. (1) and (15).

Vidensk.Selsk. Math.-fys. Medd. XVI, 1.

zn, ,3, 1 —exp(- 
(D ? 3) yy

4 W)

which is just eq. (21) remembering eq. (4).

Note 5.

We first prove the formula
00

\ exp (— a2 (x — ß) 2) — exp (— cc2 (x + $2) j dx = zr 2 a- 1 # (a f?) (N 48)
• o

where ^(x) is the Gauss error function given by

(N 49)

Taking in the first part y — x— ß, in the second y = x-j-ß as 
new variable we get

*00 #oo *00

\=(—\ = 2\ exp (— a2 y2) dy
• o • —ß '’+ß * o

so (N 48) follows at once. We can now work out the integral in 
(29). The two angle integrations being performed, we are left with

7 ^9 ('-) exp (—up'2..) \ exp (—fj.v2) — exp (—(u + 4(?) P2) X 
¿ Vi, \7l) A 1 V

A 0

X exp (2 u V v V) — exp (— 2 u. vN v) du.

The two integrals here are just of the type (N 48). In the first we 
u VN 

have a2 = p, ß = vN, in the second a3 = (u + 4u'), ß — 4 1
Putting in these values in (N 48) we easily find (30).

4
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Note G.

We prove here the formula
00

\ VV /a exp (—a2W) 4>(ß W~' *)  d\V = Arctg (N50)
' tc• o

where 'F(rr) is defined in eq. (N 49).
We put first t = ß ir'/2 as new variable and get

00 OC

\ = 2(9-1 exp (—<?(i)di= 2^-7(.t), .r=< (N 51) 
'o *o  ‘ tc

If we now differentiate the function /(æ) we get

/■'(.r) = ,t_1 \ iexp (--ZJ [/•/>(/)! dt.
• o L • * J

Integrating by parts we can get the inhomogeneous differential 
equation for f(x)

f\x) = x-7(æ)+ »-■'=

which by the ordinary methods can be solved to

/’(.r) — n~ ~-x-Arctg .? + (constant-x).

fhe constant can be determined to be equal to zero by expanding 
4»(t) and integrating term by term. For .r2 < 1 the resultant series 
is convergent to just tT~ ’-x-Arctg .r. This in (N 51) then proves 
(N 5(1).

Note 7.

We prove the formula

00

\ ,r2 exp (— «2 (.r — (i)2) — exp (— a- (x + /?)2) dx =
* o

r*/2.2  a
= t«(3) ‘i + ; 3 + : exp (- «V2)L a 2 a0 J «-

where <J> (x) is defined in eq. (N 49).
Putting y — .1' + ,^ we get
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Phe second integral is zero, the two last ones can be performed 
at once and the first one by integration by parts. The result is

. r ~i */•*
\ = — 4-exp (— a2/92) + &(ccß) + -^~exp(— «2/92) + 'r ß 
,J L a¿ ¿a9 J «

which immediately proves (N 52).

Note 8.

We prove the formula

( W1'-exp (—a2W) W1/2)dW = -5^-5+Arctg-H (N 53)

where d>(x) is defined in eq. (N 49).
We take as new variable t — flW"2 and get using (N 49).

(=2/9 3 27r '2 ( dÁ du t- exp ( — “~ ) exp (—u2). 
•’0 ’’o •’<> ß ’

Now
00 / .00 00

( dt \ du = ( dn ( dt
’0 ’’0 *'o

and so we get, performing the \ dt by integrating by parts
•hi

Here all integrations can be performed, using eq. (N 50). The re
sult is

4



52 Nr. 1. Niels Arley:

Summary.

In the present paper we discuss the scattering of ther
mal neutrons in hydrogeneous substances. In § 1 we dis
cuss the binding model for the protons. We assume the 
protons to be bound independently in an anisotropic os
cillator taking the largest oscillation energy equal to 0.37 
volts, and the others equal to 0.4 times that. Further we 
lake the lower frequencies into consideration by ascribing 
an effective mass, which we have chosen equal to four
teen times the neutron mass, to the system consisting of 
proton plus potential and assuming these “molecules” to 
move freely like gas molecules with a Maxwell distribution. 
In §§ 2 and 3 the cross-sections are calculated. In §§ 4 
and 5 we discuss the temperature effects. Firstly it is found 
that when both the neutrons and the scattering substance 
have room temperatures, the cross-section is 2.7 times 
larger than the free cross-section. Secondly it is found that 
the cross-section for neutrons at liquid air temperature i. e. 
90 abs is 34 % higher than at room temperature. These 
figures are compared with the experiments. Finally we in 
ÿ 6 discuss which effective energy must be attributed to a 
beam of Maxwell neutrons in regard to the scattering cross
section. It is found that for our model this effective energy 
lies between 0.7 kT and 1.1 kT depending on the tempera-
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ture. In the mathematical notes we have further compiled 
various formulae for transformation of coordinate systems, 
matrix elements and integrals used in the text.

In conclusion I wish to thank Prof. Niels Bohr for 
his kind interest in this work and to express my appre
ciation to Prof. G. Placzek for suggesting the problem to 
me and for many valuable and helpful discussions in the 
course of the calculations. Further I wish to thank Dr. F. 
Kalckar, Dr. C. Moller and Dr. V. Weisskopf for many 
stimulating discussions.
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